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Exchange economy and multiple equilibriums

Consider an exchange economy with two agents whose preferences are represented by the utility func-
tions
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Their initial endowments are ω1 = (2, r), ω2 = (r, 2), where r is momentarily a parameter. Find
the demand functions. Where r is chosen so that the demand for each good is positive. Prove that the
equilibrium prices are determined by the equation(
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show that for the value r = 28/9 − 21/9 there are three solutions
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and therefore there are three competitive equilibria.
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Solution

The demand function of agent 1 is the solution to the maximization problem

maxx− 1
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s.t. p1x+ p2y = r1

where r1 = 2p1 + p2r. The associated Lagrangian is

L = x− 1
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The first-order conditions are

∂L

∂x
= 1− λp1 = 0

∂L

∂y
= y−9 − λp2 = 0

Therefore

λ =
1

p1

λ =
y−9

p2

Combining λ

1

p1
=

y−9

p2

y =

(
p2
p1

)−1/9

and using the budget constraint we see that
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This means:
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Similarly, we obtain the demand of agent 2 the lagrangian is

L = y − 1

8
x−8 + λ(r2 − p1x− p2y)

The first-order conditions are

∂L

∂y
= 1− λp2 = 0
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∂L

∂x
= x−9 − λp1 = 0

Therefore

λ =
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Combining λ
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and using the budget constraint we see that
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To calculate the equilibrium prices, we use the market clearing condition for good 2:
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If r = 28/9 − 21/9 we obtain
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Clearly, p1/p2 = 1 is a solution:

28/9 − 21/9 = (28/9 − 21/9)− 1 + 1

Now suppose p1/p2 = 2. In that case,

28/9 − 21/9 = 2(28/9 − 21/9)− 28/9 + 21/9

28/9 − 21/9 = 28/9 − 21/9

and substituting for p1/p2 = 1/2:

28/9 − 21/9 = (1/2)(28/9 − 21/9)− (1/2)8/9 + (2)
−1/9

0.772 = 0.772
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